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ABSTRACT: We demonstrate an ultrasensitive microRNA detection method based
on an extremely simple probe with only fluorogens but without quencher groups. It
avoids complex and difficult steps to accurately design the relative distance between
the fluorogens and quencher groups in the probes. Furthermore, the assay could
accomplish various detection limits by tuning the reaction temperature due to the
different activity of exonuclease III corresponding to the diverse temperature.
Specifically, 1 pM miR-21 can be detected in 40 min at 37 °C, and 10 aM (about 300
molecules in 50 μL) miR-21 could be discriminated in 7 days at 4 °C. The great
specificity of the assay guarantees that the real 21 urine samples from the bladder
cancer patients are successfully detected by our method.
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■ INTRODUCTION

Abnormal expressions of microRNAs have been implicated in
various vital disease states.1−3 Detection microRNAs, therefore,
are crucial in early detection of diseases, for example, varieties
of cancers in recent years.4−7 Fluorescent bioprobes are
powerful tools for qualitative and quantitative analytical sensing
for microRNAs, which could be divided into two categories
according to the ratio between the targets (microRNAs8−11)
and the probes (DNA12−19 and RNA probes20−22). Initially,
each target strand hybridizes with only a single copy of the
probe,23−27 and then the mission of the target is over. Thus, the
ratio between the targets and the probes is 1:1. In addition to
that, polymerase chain reaction (PCR) is a milestone28 in the
microRNA detection, and isothermal amplification assays have
also been established recently.29−36 The ratio between the
targets and the probes then sharply tuned to 1:N (N > 1),
which distinctively enhances the detection limit to single
molecule or single cell level detection. Unfortunately, almost all
of the bioprobes in the above assays contain both fluorogens
and quencher groups. The target binding with the probe tunes
the distance between the fluorogens and quencher groups, the
fluorescence signals either increase (signal-on models) or
decrease (signal-off models). Dual-modification (fluorogens

and quencher groups) in the probe induces the difficulties for
the probe-design and the complex probe-synthesis steps prone
to false signals. Thus, simplification of the bioprobe structure is
a potential solution to the above limitations.
Herein, we proposed an ultrasensitive one-pot microRNA

detection assay that uses bioprobes with only fluorogens and
without quencher groups’ enzymatic amplification to overcome
the aforementioned limitations in microRNA detection.
Moreover, our proposed assay has high specificity, which is
suitable for the direct detection of microRNAs in the urine
samples from bladder cancer patients. The fluorogens modified
with the DNA probe in our assay are the unique aggregation-
induced emission (AIE) fluorogens, which emit very weakly in
solutions but display strong fluorescence in their aggregate
state.37−39 AIE fluorogens are widely applied in biosensing and
bioimaging fields due to their advanced features, such as, super
absorptivity, high luminosity, and high photobleaching
resistance.40−44 Specifically, tetraphenylethylene (TPE), an
iconic AIE fluorogen, is chemical modification with DNA
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probe using click-reaction (TPE-DNA composite probe in
Figure 1a and Scheme S1 of the Supporting Information). S1

Nuclease, a single-strand-specific endonuclease that hydrolyzes
single-stranded RNA or DNA into 5′ mononucleotides, is
chosen to test the bioactivity and biocompatibility of the
composite probe. The DNA part of the composite probe is
digested by S1 nuclease, and TPE and TPE with short DNA
residues are released into the solution, which aggregate together
due to the reduction of their solubility.
Then the aggregations result in the RIM process, which thus

blocks the radiationless relaxation pathways of TPE and
activates its fluorescence (Figure 1b and Figure S1 of the
Supporting Information).44 Furthermore, the process time is
also dependent on the concentration of S1 nuclease (Figure
1c), which demonstrates that TPE modification does not affect
the bioactivity and biocompatibility of DNA in the composite
probe.

■ EXPERIMENTAL SECTION
Materials. Tetrahydrofuran (THF) was distilled from sodium

benzophenone ketyl under nitrogen immediately prior to use. Sodium
ascorbate, dimethyl sulfoxide (DMSO), copper(I) bromide, and
acetonitrile were purchased from Aladdin and used as received
without further purification. Water is purified by a Millipore filtration
system. Other chemicals were purchased from Sigma-Aldrich and used

as received without further purification. The exonuclease III, NEB
buffer 1, RNase inhibitor, Thrombin, Bst DNA polymerase, S1
nuclease, and DEPC-treated water were purchased from TaKaRa Bio
Inc. (Dalian, China; DEPC = diethylpyrocarbonate). The exonuclease
III specifically catalyzes the stepwise removal of mononucleotides from
3′-hydroxyl termini of duplex DNA. RNA RNase inhibitor and RNase
A form 1:1 complex, and then inhibit RNase activity. S1 nuclease is a
single-strand-specific endonuclease that hydrolyzes single-stranded
RNA or DNA into mononucleotides. MicroRNAs and other
oligonucleotides were synthesized by Sangon Biotech (Shanghai,
China). Patient samples were donated by the First Affiliated Hospital
of Nanchang University.

Synthesis of TPE-DNA Conjugates via Click Reaction. The
synthetic route to TPE-DNA is shown in Scheme S1 of the Supporting
Information. TPE-N3 was successfully synthesized according to the
previously published procedures.44 Mass Spectrum of TPE-N3 is
shown in Figure S2 of the Supporting Information. Click conjugation
of custom oligonucleotides with TPE-N3 was carried out by preparing
an aqueous solution of alkyne-labeled custom oligonucleotide
sequence (5′-alkyne-CAG TCT GAT AAG CTA-3′, thereafter
named DNA-A 65 nmol) and preparing an aqueous solution of
TPE-N3 (325 nmol). Freshly prepared aqueous solution of sodium
ascorbate (1495 nmol) was added to the mixture above, followed by
cuprous bromide (747.5 nmol). The mixture was stirred overnight at
room temperature before reverse HPLC purification. The product is
obtained as a colorless solid in 32%, which were kept at −20 °C.
Deionized water was added to dissolve the TPE-DNA to yield a stock
solution with known concentrations.

DNA Cleavage Reaction with S1 Nuclease. A total volume of
50 μL of reaction mixture containing TPE-DNA (1.0 μM), 1X SI
buffer, and different amounts of S1 nuclease was incubated at 37 °C
for 8, 13, 18, and 23 min, respectively. Then, the reaction mixture was
added to the buffer solution for fluorescence spectral measurements.

Amplified Detection of MicroRNAs. The reaction buffer is 1X
NEB buffer 1. The exonuclease III amplification was performed in 50
μL of 1X NEB buffer 1 which contains 10 μM TPE-DNA probe, 300
U of exonuclease III, and varying concentrations of DNA target at 37
°C for 3 h.

For experiments at 4 °C, the exonuclease III amplification was
performed in 50 μL of 1X NEB buffer, which contains 10 μM TPE-
DNA probe, 300 U of exonuclease III, and varying concentrations of
DNA target at 4 °C for 7 days.

■ RESULTS AND DISCUSSION

For the microRNAs detection process, exonuclease III is
chosen in our assay, which catalyzes the stepwise removal of
mononucleotides from 3′-hydroxyl termini of double strand
DNA but does not with single strand DNA. More significantly,
exonuclease III does not need a specific recognition site,
therefore, our assay is distinctively different from other
amplification methods using nicking endonucleases enzymes.
For the proof-of-concept experiment, we selected miR-21, one
of the first mammalian microRNAs identified, which is
associated with a wide variety of cancers, including that of
breast,45 lung,46 liver,47 brain,48 prostate,49 pancreas,50 and
bladder.51 The TPE-DNA composite probe is only modified
with a TPE molecule at its 5′ terminus without the quencher
group, which contains exonuclease III resistant 3′ protruding
termini. At this stage, the solubility of the composite probe
makes the TPE disaggregated with weak emission. The initial
detection step begins from the hybridization between the miR-
21 and the corresponding TPE-DNA composite probe, which
induces the conformation change from random coil single-
DNA (TPE-DNA probe) to duplex DNAs (TPE-DNA probe
with miR-21) with a blunt 3′ terminus. Thus, exonuclease III
catalyzes the stepwise removal of mononucleotides from 3′
terminus, releasing TPE molecules before finally liberating the

Figure 1. (a) TPE-DNA composite probe is composed of two parts,
hydrophobic AIEgens and hydrophilic DNA, which is an amphiphile
molecule. The DNA probe is only single labeled with florescence but
without a quencher group. AIEgens are characterized by their
propeller-shaped rotorlike structures, which undergo low-frequency
torsional motions as isolated molecules and emit very weakly in
solutions (the composite probe in buffer before being digested by S1
nuclease). Their aggregates show strong fluorescence mainly due to
the restriction of their intramolecular rotations in the aggregate state
(the composite probe in buffer after being digested by S1 nuclease).
(b) The fluorescence intensity of the composite probe in the presence
of S1 nuclease (2 U) is 405% higher than that in the absence of it. (c)
The higher the concentration of enzyme, the faster the rate of signal
increase rate.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.5b04821
ACS Appl. Mater. Interfaces 2015, 7, 16813−16818

16814

http://dx.doi.org/10.1021/acsami.5b04821


miR-21. The liberated target then hybridizes with the second
TPE-DNA probe, starting a new cycle. Therefore, a single copy
of the miR-21 generates many TPE molecules, which get
aggregated inducing the RIM process, and thus blocks the
radiationless relaxation pathways of TPE and activates its
fluorescence (Figure 2a).63 Mass spectra of the composite

probe before (Figure 2b) and after (Figure 2c) miR-21
detection illustrates that almost all of the composite probes are
hybridized with miR-21 and then digested by exo III (Figure
S3−S5 of the Supporting Information). After treatment with
miR-21, particles with an average diameter of 529 nm are
formed along with the increase of solution fluorescence (Figure
S6 of the Supporting Information). This is further confirmed by
confocal images as shown in Figure S7 of the Supporting
Information.
We first conducted the assay in 37 °C, which is the optimized

working temperature for exonuclease III. Ten nanomolar miR-
21 in the presence of the TPE-DNA probe and exonuclease III
contributes a 485% increase in the final fluorescence signal. It is
clear that this assay is dependent on the exonuclease III, as no

signal increase is observed when it is omitted or replaced by
other enzymes, such as thrombin and Bst DNA polymerase
(Figure 3a). Under the above conditions, the TPE-DNA probe-
based enzyme-assisted assay performs rapidly, responding to its
target miR-21 within 40 min (Figure 3b).

The assay is sensitive (Figure 4a) and specific (Figure 4b).
The calibration curve indicates a 1 pM detection limit within 40

min at 37 °C. The fluorescent intensity also increases with the
miR-21. For the specificity evaluation test, the assay is
challenged by 3 bases mismatched and even 1 base mismatched
targets (Table S1 of the Supporting Information). The results
show the signal for perfect match target is 245% better than
that of 1 base mismatched targets, which indicates the great
specificity of our assay.
Our previous results demonstrated that the residual

exonuclease III activity against the single-stranded TPE-DNA
probe increases our detection background and reduces our
signal gain at 37 °C,52 which is almost entirely abolished at 4
°C.53 Although activity of the enzyme decreases at 4 °C, the
reaction time is prolonged, so that the background fluorescence
decreases distinctly. Therefore, the assay performs great with
high signal gain, and the calibration curve shows the detect

Figure 2. (a) The hybridization between the composite probe and
miR-21 initiates the detection process. The exo III digests the
composite probe and releases the intact miR-21, which will hybridize
with another composite probe and begins the second cycle. The TPE
is also liberated from the composite probe. Finally, a single copy of
miR-21 generates many TPE molecules that get aggregated, inducing
the RIM process, turning on the fluorescence signal. Mass spectra of
the composite probe before [(b) the main peak at 5124.6
corresponding to the theoretical value of 5123.6)] and after [(c)
there is no distinctive peak any more] the miR-21 detection, which
illustrates that almost all of the composite probe are hybridized with
miR-21 and then digested by exo III.

Figure 3. (a) It confirms that exo III induces the cycle detection, not
the buffer, thrombin and Bst DNA polymerase. (b) The time-
dependent curve shows that the miR-21 detection process is almost
completed in 40 min at 37 °C.

Figure 4. (a) Emission spectra in response to different concentration
of miR-21 (0, 1, 10, and 10000 pM) at 37 °C. Inset: The calibration
curve of miR-21 shows the detection limit is 1 pM. (b) The specificity
curve reveals that the assay based on the TPE-DNA composite probe
could discriminate the perfect matched targets and the single/triple
mismatched targets. Inset: The column diagram of specificity. Error
bars indicate standard deviation of triplicate tests.
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range from 10 aM to 1 fM, with a 10 aM detection limit
corresponding to about 300 molecules in 50 μL (Figure 5a).

Although the sensitivity is highly enhanced in the lower
temperature, it takes a much longer reaction time: 7 days for
the detection limit of 10 aM at 4 °C in comparison with 40 min
for 1 pM detection limit at 37 °C. The concentrations of
microRNAs vary in different organs we could choose,
corresponding to the reaction temperature to process the
suitable assay.
Since our assay illustrates great sensitivity and specificity

mainly due to the very simple structure of our TPE-DNA probe
with only fluorogens but without quencher groups. The assay is
challenged by the clinical samples: 21 urine samples from the
bladder cancer patients which contain miR-21 (Figure 5b and
Figure S8 and Table S2 of the Supporting Information). The
results from our assay is fully consistent with that in the clinic,
which shows the great potential for early cancer diagnosis with
accuracy and selectivity.

■ CONCLUSION
In conclusion, we have demonstrated an ultrasensitive micro-
RNA detection method based on an extremely simple probe
with only fluorogens without quencher groups, which avoids
the complex and difficult steps to accurately design the relative
distances between the fluorogens and quencher groups in the
probes. In addition, the assay could accomplish various detect
limits by tuning the reaction temperature due to the different
activity of exonuclease III, corresponding to the diverse
temperature. Specifically, 1 pM miR-21 could be detected in
40 min at 37 °C, and 10 aM (about 300 molecules in 50 μL)
miR-21 could be discriminated in 7 days at 4 °C. The super
specificity of the assay guarantees that the real 21 urine samples
from the bladder cancer patients are successfully detected by
our method. Aside from the sensitivity and specificity, our assay
requires only one step to realize cycle amplification for
ultrasensitive detection of microRNAs, without any multiple
self-assembly steps as required in fluorogens-and-quencher
groups dependent amplification assays54 or complicated
operations as required in the PCR.55 The novel assay based
on TPE-DNA probes, therefore, should be a potential method

for microRNA studies in the near future, for instance, the early
diagnosis of vital pathema with the help of microRNAs.
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